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Abstract

Linear systems theory is routinely used to determine the
behavior of imaging systems. The effect of smear,
aberration, detector size, etc. can be characterized by a
modulation transfer function (MTF). The individual MTFs
can be multiplied together to compute the system MTF.

In sampled systems, as seen in CCD cameras,
quantifying the MTF is not as easy. The effects of the
aliasing and relative phase error require a new method of
computing the MTF using statistical procedures.

The new MTF estimation method employs a simple
edge target to sample the digital array. The edge
measurements can then be converted to an average MTF
using Second Moment statistics. This new image quality
measure1 is easily extended to predict the performance of
color CCD cameras. In addition, the Second Moment can be
used to predict the image quality of the displayed image
when it's viewed at different magnifications.

Introduction

Linear systems theory is a valuable mathematical procedure
for characterizing the behavior of imaging systems. The
effect on the image by the optics, image motion, etc. can be
determined from the Modulation Transfer Function (MTF)
contributed by each element of the image train. The total
system performance can be computed by multiplying the
MTFs from each component that comprises the optical
system to compute the total system performance.

Sampled imaging systems, such as those that use CCD
detectors, are not linear shift invariant and, therefore, cannot
be handled with Fourier analysis. The lack of spatial
invariance results in the well-known image aliasing. This
effect produces jaggies that are most apparent on sharp
edges. This type of image error requires a different approach
to find the equivalent MTF of the sampling elements.

This paper presents a simple method to determine an
equivalent MTF for sampled images. The process employs
an edge target to gather the required data and compute the
average MTF for an array detector. A method of Second
Moments is used to ascertain the equivalent MTF from the
edge trace data. The equivalent angular averaged MTF can
be calculated from the mean of Second Moments taken from
two orthogonal edge traces.

The Sampling Problem

The nonlinear error associated with sampling is illustrated
on figure 1. The figure shows a low frequency cosine wave
that has been sampled on equally spaced centers. As can be
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seen on the figure, it is easy to find and assign a modulation
transfer value for the low frequency cosine target.

The error becomes more apparent for a medium
frequency cosine shown on Figure 2. The phase error
produced by sampling has made the determination of the
MTF much more difficult.

As the spatial frequency increases, the calculation of
the MTF becomes nearly impossible as a shown on Figure
3. The problem is that the modulation has become a strong
function of the phase of the cosine target relative to the
sampling array.
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The accuracy of determining the MTF by using a cosine
or square bar target decreases as the frequency of the target
increases. Figure 1 shows that at least 20 samples must be
taken over the period of the target to get a good estimate of
the MTF. The estimate that normally is used as the
frequency limit of sampling, the Nyquist rate, would be
most sensitive to the phase error. The sample rate of 3.5
samples for each target cycle shown on Figure 3 illustrates
that the estimate of the MTF is difficult - at best, almost a
factor of two from the Nyquist sample rate. In this case, the
normal methods for computing the MTF do not work
because the maximum and minimum are so scattered.

A Moment expansion of the Fourier transform has been
used to approximate the modulation transfer function for
point spread functions that are not symmetric. The MTF is
given by the form:

M f e f( ) ( )= - · ·2 2p s       (1)

where M (f) is the modulation as a function of the spatial
frequency, f, and where s is the Second Moment of the
image point spread function including the effects of the
sampled array.

The Edge Test

Square or cosine targets are difficult to produce and control.
The phase error makes it impossible to determine the MTF
accurately at higher spatial frequencies. This reduces the use
of these types of targets. What is required is a much simpler
test to determine the MTF. The knife edge test, illustrated
on Figure 4, is easy to construct. No special target
calibrations are required to determine the Modulation
Transfer Function.

The test uses a knife edge at a slight angle to the
columns of the array, as is shown on Figure 4. It is
recommended that the pitch of the knife edge relative to the
column be at least ten to one. Therefore, the knife edge
traverses 10 rows while crossing one column of pixels.
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The edge, used in this manner, magnifies the line
spread function. The data read from a single column has to
cross ten rows in order to get a complete edge trace. Hence,
the magnification of the spread function is ten to one.
Higher magnifications could be obtained by changing the
slope of the knife. A slope of 20 row crossings for one
column crossing produces a magnification of 20. The next
section explains how to convert the edge data taken along a
column directly to a Second Moment. The Second Moment
data can then be converted to the modulation transfer
function and then to an image quality metric.

Second Moment

The edge trace developed in the previous section is usually
converted to a line spread function by taking the derivative
of the edge trace function. Normally the line spread function
would be converted to a modulation transfer function by
using a Fourier transform or the method of Second
Moments3 described above. This section develops a
procedure to compute the Second Moment of the line spread
directly from the edge trace function.

The relation of integration by parts is used as follows:

U V V U U V· + · = ·òò ¶ ¶ (2)

The line spread function is represented by l (x) and the
edge trace function by e (x). It is assumed in the following
calculations that the edge trace has been scaled to lie
between a minimum of 0.0 and a maximum of 1.0. The line
spread function, l (x), is found by taking the derivative of
the edge trace function, e (x).

Let U = x and V = e (x). Then the centroid of the line
spread function, m, is:

m = ×ò l x x x
a

b

( ) ¶ (3)

From equation (2), the centroid can be found:
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The centroid can be approximated using the sampled
edge data. Let Dx denote the distance between samples in
the row direction as the data is being read in the column
direction. Start the sampling index at 1. Assuming that N
samples have been taken in the column, equation (4) can be
rewritten:

m = × - ×
=
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i

N

D D( )
1

(5)

The Second Moment of the line spread function can be
computed in a similar manner as the centroid:
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Using equation (2) again, the Second Moments can be
found:
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The Second Moment can be approximated:
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The angular averaged MTF is computed by repeating
the process outlined above for data being read in the row
direction. This is best accomplished by building a knife
edge test target with edges at right angles. The angular
averaged Second Moment is determined from the Moment
Theorem of mechanics as shown:

s
s s

=
+C R

2
(9)

where sC is the column Second Moment and sR is the row
Second Moment.

Equations (5), (8), and (9) can be evaluated by setting
up a spread sheet template and entering the edge values in
the spread sheet. The 10 to 1 edge slope is recommended
because it limits the amount of data entry but still yields
adequate sampling of the edge. A value of 17 for N, the
number of samples, usually gives enough extra samples to
determine the limiting values on each end of the edge trace.
A better statistical estimate of the system performance is
obtained by averaging the Second Moment data from
several adjacent rows and columns.

Color CCDs can be evaluated using the RGB signals
for each element. The RGB signals are weighted to produce
an equivalent luminance signal for each sample point.
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Typical weights for RGB are 0.3, 0.6, and 0.1 respectively.
The luminance samples can be placed in the spread sheet
template. This will give an excellent estimate of the color
system performance.

Image Quality and Magnification

The output of the CCD is used as input to a rendering
application. The resulting electronic image is printed at
some arbitrary magnification. As the image is made larger,
the quality of the resulting image degrades. Equation (1)
reveals that the MTF at a given spatial frequency, f, is a
function of the product of the frequency and the Standard
Deviation, S, of the spread function. The magnification2 is
the ratio of the size of the pixel used in the evaluation of the
Second Moment and the size of the pixel in the printed
image.

The MTF can be expressed as a single parameter which
is the product of S, the Standard Deviation of the image, and
M, the magnification used to produce the printed image.
Since the MTF can be defined using a single parameter, the
image quality, SQF, of the printed image can also be plotted
as a “universal” SQF template. Once the Standard
Deviation, S, of the image is known, the SQF of the image
is directly related to the magnification used to display the
image. The universal template of image quality is plotted on
Figure 5. The system SQF is shown as a function of the
product of S and f..

Conclusions

The method of Second Moments offers a single parameter
estimate of the MTF. This method has two advantages.
First, only simple computations are required to predict
image quality. Second, the determination of a single
parameter implies a large amount of noise averaging and
hence improved system performance estimates.

The Second Moment method employs a knife edge and
a simple numerical procedure that utilizes the edge data to
evaluate the performance of an optical system. The knife
edge is used to measure the image in two orthogonal
directions. The Second Moments derived from the two
edges are averaged to produce an estimate of the angular
0
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average MTF of the total system. This method is extendible
to color images.

The Second Moment method has led to the definition of
a “universal” image quality template. The SQF template is
indexed by the product of the image magnification and the
Standard Deviation of the optical system spread function.
The SQF values produced by the template are accurate
down to levels of SQF of 30. Below this quality level, the
image is unusable.

The method of Second Moments has led to the
development of a single parameter “universal” image
quality template that allows rapid assessment of system
performance. The template is very useful as an aid to the
419
digital photographer in determining the maximum usable
print size of the digital image.
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